Bounding the Projective Dimension of a Squarefree Monomial Ideal via Domination in Clutters

نویسندگان

  • HAILONG DAO
  • JAY SCHWEIG
چکیده

We introduce the concept of edgewise domination in clutters, and use it to provide an upper bound for the projective dimension of any squarefree monomial ideal. We then compare this bound to a bound given by Faltings. Finally, we study a family of clutters associated to graphs and compute domination parameters for certain classes of these clutters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further Applications of Clutter Domination Parameters to Projective Dimension

We study the relationship between the projective dimension of a squarefree monomial ideal and the domination parameters of the associated graph or clutter. In particular, we show that the projective dimensions of graphs with perfect dominating sets can be calculated combinatorially. We also generalize the wellknown graph domination parameter τ to clutters, obtaining bounds on the projective dim...

متن کامل

Arithmetical rank of squarefree monomial ideals of small arithmetic degree

In this paper, we prove that the arithmetical rank of a squarefree monomial ideal I is equal to the projective dimension of R/I in the following cases: (a) I is an almost complete intersection; (b) arithdeg I = reg I ; (c) arithdeg I = indeg I + 1. We also classify all almost complete intersection squarefree monomial ideals in terms of hypergraphs, and use this classification in the proof in ca...

متن کامل

Hypergraphs with high projective dimension and 1-dimensional hypergraphs

(Dual) hypergraphs have been used by Kimura, Rinaldo and Terai to characterize squarefree monomial ideals J with pd(R/J) ≤ μ(J) − 1, i.e. whose projective dimension equals the minimal number of generators of J minus 1. In this paper we prove sufficient and necessary combinatorial conditions for pd(R/J) ≤ μ(J)−2. The second main result is an effective explicit procedure to compute the projective...

متن کامل

New methods for constructing shellable simplicial complexes

A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...

متن کامل

Bounding Multiplicity by Shifts in the Taylor Resolution

A weaker form of the multiplicity conjecture of Herzog, Huneke, and Srinivasan is proven for two classes of monomial ideals: quadratic monomial ideals and squarefree monomial ideals with sufficiently many variables relative to the Krull dimension. It is also shown that tensor products, as well as Stanley-Reisner ideals of certain unions, satisfy the multiplicity conjecture if all the components...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013